

Fleet Management 101

An Introduction to Key Principles,
Concepts, Strategies, and
Techniques — Part 1

Indianapolis, IN March 14, 2017

Introductions	9:00 — 9:10
Fleet Management: An Overview	9:10 - 9:20
The Science of Fleet Management	9:20 - 9:30
Key Concepts in Fleet Management	9:30 - 9:45
Fleet Management Policies & Procedures	9:45 – 10:00
Driving Accountability	10:00 - 10:30
Break	10:30 – 10:45

Break	10:30 – 10:45
Organizational and Process Improvement	10:45 – 11:00
Preventive Maintenance	11:00 – 11:30
PM Training	11:30 – 12:00
Lunch	12:00 – 1:00
Maintenance and Repair	1:00 - 1:40
Performance Measurement	1:40 - 2:45
Break	2:45 – 3:00

Break	2:45 — 3:00
Managing Fleet Replacement	3:00 - 3:30
Fleet Data Sources and Processing Tools	3:40 – 3:50
Strategies for Reducing Fleet Costs	3:50 - 4:00
Key Trends in Fleet Management	TBD
Adjournment	4:00

About the Instructors

Tony Yankovich

- More than 28 years' experience in the fleet industry
 - 12 years as asset manager for 1,200 unit fleet
 - 17 years as fleet management consultant
- Directed, managed or participated in over 225 fleet studies across North America

Steve Saltzgiver

- More than 40 years' experience as a fleet maintenance technician, local and state government (Utah and Georgia), and corporate (Coca-Cola and Republic Services) fleet manager and fleet management consultant
- Successfully transitioned from wrench tuner to manager of a \$1.5 billion (annual capital and operating budget), 50,000-unit fleet

About Mercury Associates, Inc.

- Largest dedicated fleet management consulting company in North America
- More than 600 clients served, with fleets of <100 to >200,000 vehicles and pieces of equipment
- Company's mission is to help organizations improve fleet management practices, improve fleet performance, and reduce fleet costs

Key Mercury Associates Services

- Fleet Management Best Practices Studies
- Fleet Management Program Consolidation and Organizational Restructuring Studies
- Fleet Cost Analysis, Reduction, and Containment Studies
- Fleet Utilization, Optimization, and Rightsizing Studies
- Fleet Management Information System Requirements Definition, Acquisition, Implementation, Hosting
- Outsourcing Feasibility Studies

Key Mercury Associates Services

- Development of Requirements, Specifications, and Tenders

 Vehicles, Services, Information Systems
- Supplier Selection, Contract Negotiation, and Performance Reviews
- Determination of Optimal Vehicle Replacement Cycles
- Evaluation of Lease versus Buy and other Capital Financing Strategies
- Financial Audits of Fleet Leasing Company and other Supplier Invoices
- Management Training

Sample Mercury Associates, Inc. Clients

Corporate

- 3M
- Air Products
- Aramark
- BP
- Bell Canada
- BNSF Railway
- Danella
- GlaxoSmithKline
- Honeywell
- Intel
- Johnson Controls
- Pacific Gas & Electric
- Pfizer
- Quanta Services
- Rockwell-Collins
- Schindler Elevator
- Toyota

Commercial

- Alyeska Pipeline Service Company
- British Columbia Hydro
- Carolinas HealthCare System
- Coinmach Services
- Flint Hills Resources
- Georgia Power Company
- Goodwill Industries
- Gulf Stream Marine
- Hoosier Energy
- Horizon Utilities
- Hunt Brothers Pizza
- Laidlaw
- Lancaster Foods
- Lighting Maintenance, Inc.
- Terra Renewal
- Whiting Oil & Gas

Government/Other

- US Army, Navy, Air Force, Marine Corps
- US departments of Agriculture, Defense, Energy, Homeland Security, Interior, Labor, State, Veterans Affairs
- US Postal Service
- Smithsonian Institution; NASA
- Canada Post
- United Nations
- LDS Church
- RAND Corporation
- Transportation Research Board
- 33 of 50 largest cities in the US, including 10 largest;
- 3 of 5 largest cities in Canada
- 35+ state and provincial governments
- 40+ colleges and universities

Workshop Objectives

- Learn about key fleet management principles, trends, and best practices – not all of which are equally applicable to every fleet owner
- Learn to think about fleet management as a complex, multidisciplinary, and interdependent set of activities
- Learn to think about fleet management in a structured, proactive, and scientific fashion
- Learn about the importance of using objective, quantitative data to perform fleet management activities efficiently and effectively

Keys to the Success of this Workshop for You

- Think about the relevance of the concepts, strategies, and techniques presented here to the industry and the particular part of the organization in which you work
- Think about who in your organization needs to understand and support the elements of an effective fleet management program

Evolution of Vehicles

1880's Karl Benz

Evolution of Vehicles

Evolution of Vehicles

Evolution of Fleet Management

What is a "scientific" approach to the management of anything?

Scientific (definition)

 Something that is done in an organized way that agrees with the methods and principles of science

Science (definition)

- The state of knowing; knowledge as distinguished from ignorance or misunderstanding
- A department of systematized knowledge as an object of study
- Knowledge or a system of knowledge covering general truths or the operation of general laws, especially as obtained and tested through scientific method

Scientific Method (definition)

 Principles and procedures for the systematic pursuit of knowledge involving the recognition and formulation of a problem, the collection of data through observation and experiment, and the formulation and testing of hypotheses

More Definitions

Strategy

 Defines your long-term goals and how you are planning to achieve them

Tactics

 Identifies the specific steps required to attain your strategy

<u>Strategy</u>

Future
Planning
Large Scale
Why
Long Duration

Tactic

Immediate
Doing
Smaller Scale
How
Short Duration

"Strategy without tactics is the slowest route to victory. Tactics without strategy is the noise before defeat."

Sun Tzu in "The Art of War" 5th century BC

Many organizations do not approach fleet management in a scientific fashion because...

...the **goals** of fleet management activities are not clear or well understood.

The goals of any fleet management program are to furnish assets that are:

- 1. Suitable
- 2. Available
- 3. Reliable
- 4. Safe
- 5. Economical
- 6. Sustainable

Different stakeholders may view the importance of these goals very differently from one another

Many organizations do not approach fleet management in a scientific fashion because...

... there is insufficient appreciation of the **complexity** of fleet management activities

Fleet management is complicated because...

- Managing a fleet involves the performance of two distinct, but interdependent, types of activities:
 - Asset management activities
 - Enterprise management activities
- Performing these activities requires different types of knowledge and skills and many individuals who are skilled in one area are not skilled in the other
- Responsibility for performing these activities usually is fragmented, with different employees and/or organizational units responsible for different "pieces of the puzzle"
- Many enterprise management activities are designed and conducted to manage an entire enterprise, not just a fleet; enterprise-wide goals and associated management policies and procedures are not always aligned with the demands of effective fleet management

Asset Management Activities

Enterprise Management Activities

Vehicle Statistical Referencing System

Workload

Workforce

Workplace

VSRS

1.0 VEU

4.0 VEUs

5.5 VEUs

- 100 sedans
- 100 VEUs
- 1,200 hours
- 0.9 technicians

- 100 dumps
- 400 VEUs
- 4,800 hours
- 3.6 technicians

- 100 sewer trks
- 550 VEUs
- 6,600 hours
- 4.9 technicians

Sample

- Fleet = 500 assets
- VEUs = 1,100
- Hours per VEU = 12 direct labor hours per year
- Direct labor hours required = 13,200/yr
- Technician productivity target = 1,450 hours/yr
- Technicians required = 9.1
- Maintenance bays required = 14
- Shop supervisors required = 1
- Parts clerks required = 1
- Fleet manager = 1
- Support analyst = 1

Documented policies and procedures are important for...

- Ensuring that all the elements required to perform a particular fleet management activity effectively and efficiently are identified and understood
- Uncovering deficiencies in current practices
- "Institutionalizing" knowledge and maintaining sound practices despite employee turnover
- Demonstrating professionalism and commitment to high-quality performance to management and customers

Potential Depth and Breadth of Fleet Management Policies and Procedures

Table of Contents

Chapter X. Parts Management	
A. Contracting and Supplier Management	7
A.1. Available Contracting Options	7
A.2. Authorities, Authorizations, Approvals	9
A.3. Vendor Selection	11
A.4. Vendor Performance Management	12
B. Ordering	14
B.1. Requisitioning	14
B.2. Parts Orders	15
B.3. Critical Parts Lists and Reference Materials for New Vehicles	16
B.4. Expediting	17
B.5. Zero Balance and/or Backorder Management	18
C. Receiving	19
C.1. Receipt Processing	19
C.2. Erroneous Part Received	21
C.3. Staging	22
C.4. Document Receipt	22

Potential Depth and Breadth of Fleet Management Policies and Procedures (cont.)

D	. Stocking and Storing	23
	D.1. Add to Stock	23
	D.2. Remove from Stock	24
	D.3. Physical Inventory Counting	25
	D.4. Perpetual Inventory Adjustments	26
	D.5. Bin Assignments	27
	D.6. Bench Stock	28
	D.7. Received; Suspended Pending Consumption	29
Ε	. Issuing	30
	E.1. Picking	30
	E.2. Prioritizing	31
	E.3. Immediate Issue	31
	E.4. Parts for Quick-Fix/Customer Waiting Services	32
	E.5. Parts Kits	33
	E.6. Reference Materials	34
	E.7. Core Management	34
	E.8. Issued and Returned to Stock	35

Potential Depth and Breadth of Fleet Management Policies and Procedures (cont.)

F. Dis	posal	35
F.1.	. Waste Oil/Used Oil Filters	35
F.2.	. Removed Parts	36
F.3.	. Tires	.37
F.4.	. Excess Parts	.38
G. Ge	neral Policies and Procedures	.38
G.1	. ABC Analysis	.38
G.2	. Material Safety Data Sheets	40
G.3	. Hazardous Materials	42
G.4	. Safety	43
G.5	Security	45
G.6	. Warranty Management	45
G.7	. Parts-Related Rework	46
G.8	. Quality Assurance	47
G.9	. Quality Control	48
G.1	0. Special Tools, Test, and Diagnostic Equipment	48
G.1	1. Uniforms, Safety Shoes, Safety Glasses, Personal Tools	49
G.1	2. Shop Supplies	50
H. Ke	y Performance Indicators	51

Lifecycle of a Policy & Procedure

Summary: Key Attributes of a Scientific Approach to Fleet Management

- Clear understanding of goals and objectives
- Recognition of fleet management as a complex set of principles, policies, and processes that need to be applied/practiced in a systematic fashion
- Structured, data-driven goal and policy setting, forecasting, planning, and decision making methodologies
- Formally defined (documented) policies and procedures for performing all key asset management activities and for leveraging/influencing pertinent enterprise management practices

Responsibility, Accountability, Consult and Inform

 There was an important job to be done and EVERYBODY was asked to do it

 <u>EVERYBODY</u> was sure that <u>SOMEBODY</u> would do it

Responsibility, Accountability, Consult and Inform

<u>ANYBODY</u> could have done it, but <u>NOBODY</u> did it!

 <u>SOMEBODY</u> got angry about that, because it was <u>EVERYBODY's</u> job!

Responsibility, Accountability, Consult and Inform

EVERYBODY thought

ANYBODY could do it, but

NOBODY realized that

EVERYBODY wouldn't do it

Responsibility, Accountability, Consult and Inform

It ended up that <u>EVERYBODY</u>
 Blamed <u>SOMEBODY</u> when

 <u>ANYBODY</u> could of done what <u>NOBODY</u> did

Responsibility, Accountability, Consult and Inform

Clarifies individual/ departmental roles and responsibilities Improves team efficiencies and effectiveness

Removes ambiguities with regard to activities and decision points

Identifies accountabilities

communication &

coordination

Improves team

Benefits

Assists in defining roles & responsibilities

Reduces duplication of efforts or no overlap

Identify problems with the existing process

Clear demarcation of authority levels

RACI

Assists in task completion before moving to the next process activity

Responsibility, Accountability, Consult and Inform

Responsible

- These are the individuals who actually complete the task or activity and are responsible for action and / or implementation.
- Responsibility is often shared, with each individual's degree of responsibility determined by the individual with the "A"

Responsibility, Accountability, Consult and Inform

Accountable

- This is the individual who carries the "yes" or "no" authority and has full veto power for an activity.
- Only one "A" can be assigned to a task or activity and authority must accompany accountability.

Responsibility, Accountability, Consult and Inform

Consult

 These are the individuals who must be consulted prior to a final decision or action. "Consult" implies two way communication.

Responsibility, Accountability, Consult and Inform

Inform

- These are the individuals who need to be informed after a decision or action is taken because they, in turn, may take action or make a decision based on the output.
- "Inform" is FYI and implies only one-way communication.

Responsibility, Accountability, Consult and Inform

RACI Asset Management

Activities	Asset	Asset Analyst	Fleet Manager	Fleet Supervisor	Compliance Manager	Director Fleet Operations	Fixed Assets	Asset Supervisor	Director	Fleet Capital	Operations Leadership
New Assets -"How"/"Who"	A	R	С				-1		С	C	C
New Asset- "Implementation"	A	- 1	R								С
Identify New Assets Types - "What"	R								1	A	C
Replace Assets -"How"/"Who"	A	R	C				- 1			CI	CI
Replace Assets - "What"	A	R	C				E		1	C	С
Replacement Asset - " Implementation"	A	1	R								C
Transfer Assets - "What"	A	R	C				1		1	C	1
Transfer Assets - "How"/"Who"	A	R	C				- 1			-	С
Transfer Assets - "Implementation"	A		R								С
Dispose Assets - "What"	A	R	С				1				1
Dispose Assets - "How"/"Who"	A	R	С	С			D				21

Operational Excellence

The 8 Wastes – "SPELL <u>DOWNTIME</u>"

DOWN TIME are the two worst 4 letter words in Fleet

Objectives

- To establish a common language for continuous improvement in YOUR Organization
- To establish a general understanding of 'waste', from an Operational Excellence perspective
- To provide an opportunity to identify wastes from a personal perspective

Definitions

Waste

- Those elements of our <u>system</u> for which the <u>customer</u> is not willing to pay
- System inconsistency, variation, stress, & strain

Customer

- Companies which purchase our products or services for sale (including consignment)
- Our valued consumer base
- Each downstream process within our system

The 8 Wastes

DOWNTIME: The 8 Wastes, explained...

Waste	Organization	Support Environments					
Defects	Waste related to poor quality, including creating, finding, recording, and fixing defects	Waste related to mistakes and missed expectations					
Overproduction	Producing more product than needed for immediate consumption or customer requirements	Performing tasks earlier than needed, pulling resources from higher priorities					
W aiting	Product, people, or machines delayed due to earlier processes	System elements which cannot perform tasks, due to upstream considerations					
Not Tapping Potential	Waste due to not fully utilizing resources available, including human intellect	Waste related to resisting new ways of thinking or performing functions					
Transportation	Waste related to physical movement of product to different locations	Waste related to moving physical or virtual elements across locations					
Inventory	Waste related to storing product without specific, current requirements	Collecting physical or virtual elements, without actual/immediate need					
Motion	Waste related to movement of people or equipment within a task	Waste related to poor ergonomics, or movement within the 'envelope' of the body					
Excess Processing	Waste related to not understanding actual customer requirements	Performing tasks & functions with greater depth than actually required for the purpose at hand					

Waste #1: Defects

This is waste related to poor quality and missed expectations, such as:

- Input errors
- Creating defects
- Routing defects
- Finding defects
- Correcting defects
- Recording defects
- Reporting defects

- Errors in master data
- Wrong information submitted
- Misunderstood communications
- System crashes

Waste #2: Overproduction

This is waste related to producing too much or too early, such as:

- Over-ordering
- Early scheduling
- Producing more product/services than is required for immediate consumption

- Preparing reports too early (information changes!)
- Purchasing travel too far in advance
 (plans change!)
- Ordering & storing years worth of Parts inventory

Waste #3: Waiting

This is waste due to unbalanced processes, such as:

- People waiting for processes to finish
- Processes waiting for the previous process to complete
- Product waiting for the rest of the batch to be completed
- Anything which should be 'flowing' but is standing still

Examples:

- Waiting for work assignments
- Waiting for meetings to start
- Waiting for Parts to install
- Waiting for signatures

Waste #4: Not Tapping Potential

Waste due to misuse of human potential & resistance to change, such as:

- Not utilizing human potential
- Not soliciting and using the ideas of others
- Not engaging people in the change process
- General resistance to change

Examples in, SHOPS environments:

- Not using outside resources
- Squashing the ideas of new teammates
- Performing tasks 'your way' (not utilizing the approved Standardized Work)
- Not developing your people (or yourself!) for future opportunities

Waste #5: Transportation

This is waste due to movement between processes, such as:

- People and product moving between workstations
- People and product moving within work areas
- Movement of product between functional areas

- Traveling to remote meetings
- Moving paper around the system
- Moving electronic information around the system

Waste #6: Inventory

This is waste related to materials and product in excess of immediate requirements, such as:

- Raw materials
- WIP (work-in-process)
- Finished goods

- Office supplies
- Historical report copies
- Email
- Computer/desktop files

Waste #7: Motion

This is waste related to ergonomics and movement within tasks, such as:

- Hand and arm motion
- Machine stroke/cycle
- Control movement on equipment

- Repetitive motion can result in 'carpal tunnel' syndrome
- Activities which promote poor posture can increase stress, risk of injury
- Repetitive motion adds time to tasks

Waste #8: Excess Processing

This is waste related to misunderstanding customer requirements, such as:

- Cleaning in excess of requirements (and recleaning)
- Inspections
- Moving product, then moving again
- Generating trash
- Other non-value-added steps

- Signature requirements for minor purchases
- Inspections
- Auto-generated reports

Which is the 'Worst' Waste?

Depending on where you are in the process, some wastes affect you more than others.

In the value chain,
OVERPRODUCTION is generally seen as the 'worst' waste,
because it can be the <u>root</u>
cause all of the other wastes.

In **support functions**, EXCESS PROCESSING is generally seen as the 'worst' waste.

REMEMBER, <u>all</u> 8 wastes exist in every process, to one degree or another!

How to Use the Concept of 8 Wastes

- As a Leader:
 - Challenge your teams to <u>continually</u> identify waste
 - Empower project and workshop teams to redesign processes to <u>eliminate</u> wastes from systems
- As a Team Member:
 - Ouestion everything!
 - Point out waste at every opportunity!

Summary

- Customers define value as those elements for which they are willing to pay
- If you question whether or not something adds value, ask, "Would our customer want more of it?"
- Waste includes all those system elements for which the customer would rather <u>not</u> pay
- There are 8 kinds of waste:

Eliminating waste is <u>everyone's</u> responsibility

Defects
Over-production
Waiting
Not tapping potential
Transportation
Inventory
Motion
Excess processing

Review Current PM Program

Plans and procedures:

- Review written procedures for vehicles and equipment;
 and
- Review OEM technical manuals and literature
- Review training records and technician training strategy
- Review shop layout and parts inventory operations

Review Current PM Program

- Gap Analysis of Current PM Program:
 - Meet with management team and key stakeholders (including technicians and supervisors) to determine program goals and expectations; and
 - Identify current program strengths and weaknesses and review opportunities using Mercury's vast industry knowledge of what should be included in a "Best in Class" PM program

Establishing PM Policies and Procedures

- Regulatory compliant
- Sets comprehensive standards
- Team trained to standards
- Dynamic
- Acknowledged by personnel

Department of Administrative Services Division of Fleet & Surplus Services (DFSS) Policies and Procedures Memorandum PPH# 02-02 tiflective Date: 11/18/2902 Expiration Date: Until rescinded

Subject: Preventative Maintenance (PM)

1- Purpose:

To establish guidelines, policy and procedures in accordance with Administrative rule RZP-1-2 (add/s/35)(38) and RZP-0-1 governing the agency use, responsibility and regularment to perform PM maintenance services and PM regular on state whiches.

2- Policy & Procedures

- PM services shall be performed on state vehicles in a timely menner as prescribed in the Service Land Agreement (SLA). Regular-duty vehicles are required to have a PM inspection every 5,000 miles. Extreme-duty vehicles are required to have a PM inspection profromed every 3,000 miles. Agenties shall work with CPC to set up PM inspection programs for specialized equipment.
- The cost for PM services and repairs shall be covered by DFO for all full service lease whiches, hub-service leases shall be responsible to coordinate all PM services, and repairs using the approved DFO maintenance meleosis. Of weekers.
- Piset Operations shall set all statisheds PM standards for agencies to follow. Piset Operations will sork closely with each agency fixet contact to conform to the original equipment-manufacturer (CEH) white IM specifications.
- Capital lease agencies shall be responsible for the cost and accurate tracking of their PM repairs and services.
- Agencies shall create internal policies to insure vehicle operators perform proper PM maintenance on their state vehicles to conform to state PM policies, guidelines and procedures.
- Apercies shall be responsible for premature or catastrophic vehicle repair costs caused by PM neglect, abuse antitor fallers to comply with PM procedures.
- 7. Fixet agencies used assist the division of freet Operations with maintaining the eccurate PM class in the fixet information system. Agencies are required to use all stateatide purchase contracts approved by DFO and/or the division of Purchasing and General Services. DFO shall be responsible to work with the division of Purchasing to provide the necessary infrastructure and wandor contracts to confirm PM maintainment stateatide.
- 8. Apencies shall use the fixed information explains to accurately back of PM repairs and services. All services code information shall be documented clearly to provide the search date, time, releage, parts, labor and type of PM service performed on state vertices. In the worst an agency chooses to see vendors with an automated interfoce to the facility information system, these replaces should provide at a minimum the information described in this section.
- Aparcias with Capital lease authorization shall be responsible to provide their vehicle operators with a P4-looper books with the proper P4 inspection intervals reconstanted by the Chiginal Bigs/prest manufacturer (CEH).

Work-flow Standardization

- Visual flow
- Reduces people, processes and technology waste (i.e., Lean, Six Sigma)
- Promotes continuous improvement

Orderly Approach to PM Inspection Increases Technician Efficiency and Productivity

PM Design: Maximizing Productivity, Quality, and Minimizing Waste

Properly sequenced PM steps for efficiency: Reduction of excess motion

Getting to best practice

- Refresh sequence of PM steps
- Update materials including training video and module to current standards
- Conduct analysis of technician wrench time and efficiency

What it is

program

reference

to ensure

sequence

material

proper

of PM

drive

steps to

greatest

technician

efficiency

and

Training.

Process Mapping w/Spaghetti Diagram and Time/Motion Studies Optimize Efficiencies

How?

- Sketch work area (i.e., benches, toolboxes, parts room, etc.) before you begin your observation
- Observe technician movements to identify wasted motion
- Track tech activities to determine value add vs. non-value added (i.e., waste)
- Draw tech movements in a "spaghetti diagram"
- Identify activities that generate the most wasted movement / time (e.g., trips to the parts room)
- Review diagram / data after observations to highlight Non-value added movement

What Tasks are in a PM Program?

- Inspect
- Change
- Clean
- Lubricate
- Adjust
- Prevent/Predict
- Communicate
- Report

Formal PM Checklists Should be Used to Ensure Standard Processes are Followed

Objective

- OEM/GOV based task list All EQ types have own list
- Step-by-step process
- Tasks should be numbered for easy reference
- Ensure regulatory compliance
- Include driver communication (DVIR)

Benefits

- Create audit trail
- Increase productivity
- Mitigate liability
- Reduce breakdowns and lower costs

Daily PM Reporting is Critical to Proactive Scheduling, Leveling, and Compliance

Objective

- Schedule PMs in advance
- Review compliance and non compliance
- Document historical trends
- Promote shop's value

Benefits

- Identifies gaps and opportunities
- Inform stakeholders
- Promotes continuous improvement

Rank	Detail	Straight Trucks- Compliant	Single Axle- Compliant	Mutti Acie- Compliant	Trailer- Compilant	Processor Co.	Other. Compliant	Total- Compliant
Company	Total	89.20%	91.80%	89.70%	92.50%	64.60%	94.40%	87.40%
Rank	Detail	Straight Trucks- Compliant	Single Axle- Conclass	Matti Azie- Compliant	Trailer. Compliant	Light Duty- Compliant	Other- Compliant	Total- Compliant
1	Northwest Region	97.00%	95,70%	92.40%	99.20%	70.40%	97.10%	33.60%
2	West Region	100.00%	96.60%	96.00%	97.00%	72.80%	98.10%	92/40%
3	South Region	97,10%	93.50%	86,90%	94.50%	65.00%	97.20%	99.50%
4	Southeast Region	83.60%	92,70%	93.20%	93.90%	65.60%	95.20%	88.70%
5	Great Lakes Region	94,70%	90.20%	83.00%	89.70%	62.70%	92.90%	84.50%
	B-1181		- 1	M Due List				Dec

85.60%

101	CED	3277	2012	CHEVY	MAILBU	14063
in	CEU	3576	2012	GMC	SIERRA	15995
_	CRC	2767	2012	CHEVY	MALIBU	12492
	CRC	2877	1994	DODGE	SPIRIT	125432
	CRC	3260	2015	BUICK	LACROSS	9660
	CRC	3730	2012	CHEVY	CRUZE	19430
	CRC	4016	2012	DODGE	RAM	10853
	CUMH	3247	2012	DODGE	8360	8172
	CUMH	3294	2012	DODGE	B350	11794
	CUMH	3308	2012	DODGE	8360	10664
	CUMH:	3905	2012	CHEVY	CORSICA	10140
	CUMH	3945	2012	FORD	CLUB WAGON	6869
	DAG	1407	2010	GMC	SIERRA	9093
	DAG	2367	2007	CHEVY	\$10	11621
	DAG	2863	2012	DODGE	RAM	16513
	DAG	2994	2012	FORD	F150	26790
	DAG	2995	2012	FORD	F150	5526
	DAG	3007	2012	DODGE	RAM	19447
	DAG	3273	1994	CHEVY	CORSICA	18083
	DAG	3333	1994	CHEVY	CORSICA	121718
	DAG	3556	1999	FORD	F-150	124051

PM Manuals and Multi-Echelon Task Lists Strengthen Quality and Equipment Reliability

- PM tasks included in each subsequent PM
- PM A tasks included in PM B tasks
- PM B tasks included in PM C tasks

Formal PM Reporting

Northeast

88.60%

Objective:

- Schedule PMs in advance
- Review compliance and non compliance
- Document historical trends
- Promote shop's value

Benefits:

- Identifies gaps and opportunities
- Inform stakeholders
- Promotes continuous improvement

Bank	Detail	Straight Trucks- Compliant	Single Axle- Compliant	Butti Axie- Compliant	Trailer. Compilant	Light Duty- Compliant	Other. Compliant	Total- Compliant
Company	Total	89.20%	91.80%	89.70%	92.50%	64.60%	94.40%	87,40%
Bank	Detail	Straight Trucks- Compliant	Single Axle- Complant	Matti Axie- Compliant	Trailer- Compliant	Light Duty Compliant	Other- Compliant	Total- Compliant
1	Northwest Region	97.00%	95.70%	92,40%	99.20%	70.40%	97.10%	93.60%
2	West Region	100.00%	96.60%	96.00%	97.00%	72.60%	98.10%	92/40%
3	South Region	97,10%	93.50%	86.90%	94.50%	65.00%	97.20%	99.50%
4	Southeast Region	63.60%	92,70%	93.20%	93.90%	65.60%	95.20%	88.70%
5	Great Lakes Region	94,70%	90.20%	83.00%	89.70%	62.70%	92.90%	84.50%
	-		-	If Diss I list				Dec

CED	3277	2012 CHEV	Y MAILBU	14063
CEU	3576	2012 GMC	SIERRA	15995
CRC	2767	2012 CHEV	Y MALIBU	12492
CRC	2877	1994 DODG	E SPIRIT	125432
CRC	3260	2015 BUICK	LACROSS	9660
CRC	3730	2012 CHEV	Y CRUZE	19430
CRC	4016	2012 DODG	E RAM	10853
CUMH	3247	2012 DODG	E 8360	8172
CUMH	3294	2012 DODG	E B350	11794
CUMH	3308	2012 DODG	E 8360	10664
CUMH:	3905	2012 CHEV	Y CORSICA	10140
CUMH	3945	2012 FORD	CLUB WAGON	6869
DAG	1407	2010 GMC	SIERRA	9093
DAG	2367	2007 CHEV	Y S10	11621
DAG	2863	2012 DODG	E RAM	16513
DAG	2994	2012 FORD	F150	26790
DAG	2995	2012 FORD	F150	5526
DAG	3007	2012 DODG	E RAM	19447
DAG	3273	1994 CHEV	Y CORSICA	18083
DAG	3333	1994 CHEV	Y CORSICA	121718
DAG	3556	1999 FORD	F-150	124051

Multiple Echelon Task Lists

- PM tasks included in each subsequent PM
- PM A tasks included in PM B tasks
- PM B tasks included in The C tasks
- Etc...

Dedicated PM Bay Setup

Oil Analysis Benefits

- Enhances Equipment Life & Reliability
 - 1. Ensures proper lubrication
 - 2. Detects excessive wear
 - 3. Spots contamination
- Extends Oil Life
 - 1. Monitors oil condition
 - 2. When needed, treats and cleans
 - 3. Allows longer change intervals
- Reduces Downtime
 - 1. Spots lubrication problems
 - Corrects problems before serious issues occur
 - 3. Saves components

Can double change intervals 450 – 900 hours

Summary of PM Best Practices

- Organization focus is clearly on PM services
- Based on OEM recommended interval requirements
- Meets customer convenience (e.g., Swing/Graveyard shift, weekend focus)
- Customers receive advance notice of PMs scheduled
- Ensure safety practices in place (e.g., LOTO, etc.)
- Has a dedicated bay with part kits staged in advance to minimize steps and lost time
- Uses detailed "Checklist" with symbols (e.g., √, X, O) and form for follow-on repairs
- Sequential flow for greater productivity/fewer errors

Summary of PM Best Practices

- Program incorporates multiple echelons of progressive tasks
- Reports missed and overdue PMs to users
- Work orders used to record PM and follow on maintenance activities
- PM inspection is separated from defects discovered for follow on repairs for greater benchmarking
- Uses DVIRs, history, recalls and campaign data
- Procedures identify vehicles scheduled for replacement, check for overdue PMs, and check for warranties

Good Training Programs are Highly Dependent on Durable Process

- Existence of robust policies and procedures in a PM Manual
- Set standards with detailed step by step work instructions
- Commit to ongoing technician training (e.g., Classroom and Practical)
- Leader enforcing commitment to Quality Control
- Team accountability for work performed

Technician PM Training Standards: What to look for during the inspection process?

Check Tires/Valve Caps Wheels/Rims:

- a. Tread minimums are <u>5/32</u> front and <u>3/32</u> rear unless otherwise directed.
- b. Check tires for excessive curbing, cuts, general sidewall condition.
- Check wheels around lug nuts for cracking, corrosion and rust.
- d. Check tires for an irregular wear pattern.
- e. Check wheel alignment to air inner dual.
- f. Check and record tire air pressure, correct as needed.
- g. Check valve stem condition and assure steel valves are used.
- h. Check that tires are properly matched, size and tread design.

Measure Tread in three (3) places

Tech Training Standards – Testing is Critical to Reinforce Set Standards

- Question 1 (PM)
 - What is the minimum tire tread depth permitted by DOT on all steer axle tires on trucks, tractors, or buses?

A. 1/32 in.

B. 4/32 in.

C. 2/32 in.

D. 5/32 in.

Certifying PM Technicians

- Safety focused
- Qualified
- Experienced
- Accountable
- Productive
- Standardized

PM – Keeping Score

- Capture accurate data
- Define metrics
- Set goals
- Review progress
- Improve performance

Pr	Preventative Maintenance				
KBI	Act	Goal			
Early	3.3%	15.0%			
Late	9.9%	0.0%			
Compliant	86.9%	85.0%			

PM Related Metrics:

- On-time compliance %
- Early completion %
- Late (Past due) %
- Asset reliability %
- Asset availability %
- Shop Scheduling %
- Downtime %
- # Door traffic
- # Road calls
- QCI given/pass %
- # Backlog repairs

PM Compliance

On-time PMs reduce unnecessary costs and downtime

Goal =
$$> 95\%$$

Early PM Avoidance

Early PMs create unnecessary costs and technician labor

Goal =
$$< 5\%$$

Late PM Avoidance

Late PMs cost money and > risk unscheduled repairs

Goal = 0% (No late PMs)

